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A new approach to the kinematical theory has been developed for the case of binary alloy solid solu- 
tions with short-range ordering of the atoms and displacements of the atoms from the average lattice 
sites due to departures of the effective atomic radii from the average for the alloy. Both the pseudo- 
temperature factor on the Bragg reflexions and the diffuse scattering intensity are shown to depend on 
summations over higher-order correlation parameters, defined in terms of the probabilities that groups 
of three, four or more sites should be occupied in specific ways. Expressions involving these parameters, 
and the usual short-range order parameters, ei, are derived with terms of up to the second order in the 
displacement parameters for the Huang scattering around the fundamental Bragg reflexions, for the short- 
range order diffuse peaks, and for additional diffuse scattering depending on higher-order correlation 
parameters only. Special cases of practical significance are explored, and some estimates are made of 
the relative magnitudes of the terms not included in previous treatments of this problem. 

Introduction 

The usual treatment of the diffraction of X-rays, or of 
electrons or neutrons, by binary alloy solid solutions 
involves the kinematical or single-scattering approx- 
imation. The complications resulting from dynamical 
interactions of diffracted beams are treated elsewhere 
(Fisher, 1965; Cowley 1966; Cowley & Murray, 1968). 
The initial kinematical treatments (see e.g. Cowley, 
1950) involved the assumption that the atoms were 
placed on the lattice points of a periodic space lattice. 
The fundamental reflexions that are given by both the 
fully ordered and completely disordered states were 
then found to be independent of the state of order. 
The intensities of the diffuse scattering due to short- 
range order (s.r.o.), or of the superlattice peaks given 
by alloys with partial long-range order, could be ex- 
pressed in terms of Fourier series with the Warren 
s.r.o, parameters, ai, (Cowley, 1950, 1965) as coef- 
ficients. 

The modulation of the diffuse scattering arising 
from the static displacements of atoms which result 
from the differences in atomic sizes was first observed 
by Roberts (1954). Warren, Averbach & Roberts (1951) 
modified the diffraction theory by the inclusion of 
size-effect coefficients, fli, which were dependent on 
the ai and contributed an anti-symmetrical part to the 
s.r.o, diffuse peaks. 

Later Borie (1957, 1959) gave a more complete ac- 
count of the size effect, based on a treatment due to 
Huang (1947) of scattering from atomic displacements 
associated with point defects. Borie predicted four 
effects; the reduction of the intensity of fundamental 
reflexions by the equivalent of a temperature factor, 
the broadening of outer s.r.o, diffuse peaks, size-effect 
modulation and displacement of the s.r.o, diffuse peaks, 
and a Huang diffuse scattering around the fundamental 
peaks. Related results have been reported by Krivoglaz 
(1958), Krivoglaz & Tikhonova (1960), and by Smirnov 
& Tikhonova (1960). 

While Boric showed that his predictions were in 
fair agreement with experimental observations, his 
treatment was based on some rather severe approxima- 
tions. In dealing with the Huang scattering for example, 
he dealt only with the limiting case of a small degree 
of s.r.o. While this proved sufficient for a first compari- 
son with experiment, and established the general form 
of the diffuse scattering, it is probably an insufficient 
basis for the deriving of the more accurate values for 
s.r.o, and size-effect coefficients which may be required, 
for example, for comparisons with the theoretical 
results of Clapp & Moss (1966, 1968). 

In discussing the limitations of his treatment, Boric 
(1957) points out that a more complete account of the 
scattering would involve correlation coefficients of 
higher order than the usual s.r.o, parameters which 
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describe two-particle correlations only. Such higher- 
order coefficients would describe, for example, the 
probability of finding one type of atom at a site, j, given 
the occupancy of two sites, m and n. Coefficients of 
this sort have been discussed to some extent in relation 
to dynamical scattering effects in electron diffraction 
(Cowley, 1966; Cowley & Murray, 1968) but formal 
considerations of such coefficients have been initiated 
by Clapp (1967) and, on this basis, we attempt now a 
more complete formulation of the problem of diffrac- 
tion from an alloy with short-range order and size 
effect. 

A further complication to the diffraction problem in 
practice, which has not been included in the present 
treatment, is that the thermal vibrations of the atoms 
modifies the intensities of both the fundamental reflex- 
ions and the s.r.o, diffuse scattering (Walker & Keating, 
1961) and also adds a background of thermal diffuse 
scattering. To the degree of approximation used by 
Walker & Keating, the modification of intensities may 
be included by combining a Debye-Waller factor with 
each atomic scattering factor. 

Higher-order correlations and order parameters 

For a binary, AB, alloy, with fractions mA and mB of 
A and B atoms, the Warren short range order param- 
eters cq relating to atomic sites ] and k separated by 
a vector r l = r e - r j  may be defined in terms of the 
conditional probability P(i~I A) that, given an A atom 
at j, there will be an A atom at k; 

P (i'A[ A) = mA "{- mB~i = mA -{- m13% k ,  

or, in terms of the a pr ior i  probability of A atoms being 
on sites j and k, 

e ~ = m ~ + m A m B O q k = ( a ¢ 0 . ~ )  , (1) 

where the brackets ( . . )  represent the ensemble average 
(Clapp & Moss, 1966) over the products of the 
quantities ai ~, a~ defined so that al ~ = + 1,0.~ = 0 if there 
is an A atom at ], and 0"~=0,0.~= + 1 if there is a B 
atom at j. 

The correlation may also be expressed in terms of 
the Flinn parameters (Flinn, 1956), 0"2, defined by 
0.2 = mB for an A atom, and 0"2 = - mA for a B atom at j. 

Then 
0"~ = 0"j -{- mA , 

0.1  = m B - -  0.i , 
o r  

0"2 =a¢--mA=mB--0"] 3. (2) 
Hence 

(0"¢0"~) = ((0.j +mg) (0"k+ mA)) = m ~ +  (0.i0.k), (3) 

and 
(0"i 0"k) = mAmBOqk , (4) 

since 

Similarly we may write, for the other pair correlations 

AB__ Pjk -- p ~A = m a m a _  mAmBOq k = m A m B _  (0"2 0"k), 
p BB _ _ ~ 2  ..[_ mAmB~Xjk__, m2B q_ (0.j 0.k) (5)  jk - - ' " B  

Definition of the higher-order correlation coefficients 
involved in the probabilities of occupation of three or 
more sites by specified types of atom then follows by 
a straightforward extension of these equations. 

For example, 

AAA__ A A A P123 --  (0"1 0"2 0"3 >~-- <(0"1 Jr- mA) (0" 2 dr- mA) (0"3 + mA)> 

mA{(0.10"2) + <0"20"3> + 
+ (0.10"20"3) • 

Such expressions may be compared with those given 
by Clapp (1967); they are identical with those given by 
him for the special case of 50:50 composition, with 
mA =mB = ½, when all terms of odd power in 0"2 vanish. 

We may use the averages (0"10"20"3) as our correlation 
coefficients, or else, as in the case of pair correlations, 
introduce parameters such that the diffraction expres- 
sions are simplified: thus 

(0.10.2) = mAmBIz12 , 
(0"10"20"3) -- mAmB1.123 , 

<0"10"20"30-4)__ 2 2 --/7'/AD'/B (/71234 
etc. (6) 

Then 

A A A ~  P 123 -- m3A -{- m2gmB(0q2 + ~23 "~" t~31) "at- mAmB1"123 , 

pBBB_ mgm~ +O~31)_mgmBZ123 123 --/7/3 '-I- (~12 '-[- ~23 

pAAB123 = m ~ m B  "[- mA m 2  (t~12) -- m2AmB(t~23 -~- t~31) 

-- mAmB1"123 , 
etc. (7) 

Similarly 

p AAAA _ ,~,4 -b m3AmB(~12 -[- ~23 q- ¢X34 -[- ~X41 "[- ¢X13 -[- ~24) 1234 --  tt 'A 

+ m2AmB(r123 + r234 + z341 + z124) 2 2 -[-/T/A/q'/B (/91234, 

pAAAB=m3AmB_m3mB(O~14.bOC24_[_O~34 ) 2 2 + mAmB (~12 --1234 

-{- ~23 -b 0~31 ) -I- mAre ~ 1"123 -- m2AmB(1"124-k- 1"234 
+1"134)- 2 2 /~A/~B ~1234 , 

etc. (8) 

The higher-order correlation parameters introduced 
in this way have the desirable properties that they are 
zero for complete disorder, or when one (or more) of 
the sites considered is removed to infinity so that the 
occupancy of this site is unrelated to the occupancy 
of the remainder. For perfect order, the parameters 
tend to maximum values, either positive or negative. 
For example, for sites which are points of the same 
sublattice so that they will always be occupied by the 
same type of atom in the case of perfect order, 

(O'10"20"3) __-- mA(mB)3 + roB(- -  mA) 3 
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and 
TI2 3 = m B -  m A .  

Similarly 
(0"lt72t73t74) = mA m4 + m B  m4 , 

so that 

~01234 = (1 + mA + m B/ 1 + 1 
1. . . . . . . . .  ~ . . . . . . . . . . . . . .  

m B  m A /  m B  m A  

For the special cases that two or more of the sites 
considered coincide, these parameters reduce to 
combinations of lower-order parameters. For example, 

Zl12= (mB--mA)0q2 , 

"till = ( m B - - m A )  , 

91123 ~23+ ( m B - m A )  ~- T123 , 
m_A.mB 

mA. rr/B ) 
~1112=0~12 r o B  -at- mA - 1 . (9) 

Some information on higher-order correlation prob- 
abilities has been derived by Gehlen & Cohen (1965), 
for the particular case of Cu3mu above the critical 
temperature, from computer experiments. These 
authors generated a model of a sample of an alloy, 
containing either 4000 or 16,000 atoms, for given 
values of the first one, two or three short-range order 
parameters, by interchanging atoms progressively, 
starting from either a fully ordered or a random con- 
figuration. Irrespective of the starting point, they 
obtained consistent results for the probabilities that 
triplets or quadruplets of nearest neighbour atoms 
would have specified compositions, i.e. for the quanti- 
ties gag Am P ~23 , P ~23 , e tc .  where the sites 1, 2 and 3 form an 
equilateral triangle of nearest neighbour sites, and 
pAAAA etc .  If the values given for the triplet probabili- 1234 
ties are inserted in the equations (7) we obtain the 
consistent result that, for e 1 = - 0 . 1 9 5 ,  we obtain 
z~23 = -0.072.  From the given nearest-neighbour prob- 
abilities it was also found possible to derive a consistent 
result for ~91234 from the equations (8). 

These results of Gehlen & Cohen (1965) suggest 
that some at least, of the higher order correlation 
parameters may not be independent parameters, but 
may be completely determined by the s.r.o, parameters. 
The extent and form of this inter-dependence needs to 
be investigated. 

Formulation of the diffraction problem 

We assume that the displacements of atoms from their 
mean lattice positions are linear sums of displacements 
due to all other neighboring atoms. Thus, if the dis- 
placement of an A atom on site j due to an A atom on 
site k is written ekjAA, then the total displacement of the 
A atom at j is given by 

"P (O'~k i  -~-O'~ l~kB~) . ( 1 0 )  

The requirement that the average displacement for 
all A atoms from their mean lattice sites should be 
zero gives (cf. Borie, 1957) 

AA BA mA~ki +mBSk| = 0 .  (11) 

It is convenient to a s s u m e  tha t  t.k|eAA--eAB---- ~'k| = CkIA, i.e. 
that the displacement of a neighboring atom due to 
the excess or defect in size of a given atom is inde- 
pendent of its nature. If  this assumption is not made, 
the calculation of diffraction intensities can be carried 
out in exactly the same way, but the resulting expres- 
sions are more complicated. It was considered that 
such additional complication is unwarranted at this 
stage. 

It may be shown readily (see e.g.  Guinier, 1963) that 
the total diffracted intensity in the kinematical ap- 
proximation may be expressed as the sum of two parts: 
the sharp, Bragg reflexions given by the Fourier trans- 
form of the Patterson function for the average, periodic 
structure and the diffuse scattering, given by the 
Fourier transform of the Patterson function for the 
deviations from the average lattice (Cowley, 1965). 

IBrag --IB=Z) Z" k/~/r* exp {2niu. (rj--rk) } (12) 
= N F F *  S,l exp {2niu. r ,},  (12a) 

zk 
xexp {2niu. (rs--rk)}, (13) 

where the usual constant terms, Lorentz and polariza- 
tion factors have been omitted, u is a vector in recip- 
rocal space, rj and rk are vectors from an arbitrary 
origin to the atoms at sites j and k, and r, in (12a) is a 
space-lattice vector given by r~ = r~ - rk  for the averaged 
atoms at j and k. 

Considering first the fundamental Bragg peaks, the 
average structure factor occurring in (12) may be 
written F=/vA + FB where 

FA= <aAFA(U) exp {2ni(u. si)}) 

=tA(u)[(a¢)-2n2 rk {<OqGtGl > 
× (n. (u. (u. (u. 
+ (u. (u. 

-t- ~(2~)4 ~V'k~V'l~m,~V" n{<O" iA A A A U ~ U I  UmUn >A (U. I~ A 

× (u. (u. (u. + . . .  } + . . . ] .  

Terms of odd order in (u.  •kAl) in this expansion are 
put equal to zero on the assumption that, as will be 
the case for the Substances of simple structure usually 
considered, the environment of any site is statistically 
centrosymmetric. 

Then, using the relationship (10) and the equations 
(7), we may write, up to the second order terms in 
s A, with i = 0, 
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F~=FA [ rna -  2r~2 Z'~X,(u. s~o ) (u. Sl~) 

m~ ~-0~ +--0k| ~+ -m~-P0kt 

+ " "  I = maFa[1- -2 rc2  Z~kZ~l(U" skAo) (U. Sl~){/./~kl 
-1-(1 " ~ - ] . l ) T O k l } " t - . . . ] ,  ( 1 4 )  

where kt=mA/mB. Similarly 

F~=rn~F~[1-2r~z Xk X,(u. s~o ) (u. SA0) {pek| 
- ~ ( 1  - t - ] . ~ ) T O k l } - } - . . . ] .  (15) 

Thus we may write 

F=mAF~EA + msF~E~ , 

where E.~ and E~ are the bracketed terms in (14) and 
(15) and may be considered as pseudo-temperature 
factors for A and B atoms respectively. Alternatively, 
we may combine (14) and (15) and, separating out the 
special cases, k--l ,  obtain the general expression for 
the Bragg peaks 

I S = N X~ exp {2~iu.  ri} 
x {(m A+ F~ + m~FB)2[1- 47t2/~ X k (u. S~o)2 
-4n2/z X X 0qa(u. SAo) (u. s~)+...1 

k ¢ l  

--mAmsAF(ltFA+ FB) [(1 --/~) 2 k "0k(U • SkA0) 2 

+ (1 + #) X X TOM (U. SkA0) (U. S A ) " t - . . .  ] .  
k # l  

(16) 

The first part of this expression applies a pseudo- 
temperature factor to the Bragg peak intensities cal- 
culated for no size effect, as envisaged by Borie. The 
second part adds a term proportional to AF= FA--FB. 
It may noted that even the second-order term in this 
expansion depends on the third-order correlation 
parameters, %kV Further terms in the series will 
necessarily involve higher-order correlation param- 
eters, although, in each case, the dependence will be 
only on summations of these parameters. It may be 
anticipated that these summations will give rise to 
appreciable contributions to the pseudo-temperature 
factors under particular circumstances. The contribu- 
tions of v0u~ terms will be zero for perfect order or 
complete disorder and also vanish for rnA = m~ (Clapp, 
1967). They will presumably be greatest for composi- 
tions well away from mA=m~ and for temperatures 
near the critical temperature. 

For the calculation of diffuse scattering according 
to (13), it is convenient to define, 

F°=(aAFA + a~F~) , 
F,=aiAFA exp {2ztiu. s,} + ai~Fa exp {2z~iu. el}. 

Then 

Idiff=~'i ~'k [(Fj _ [ o )  (~k_Fk0)+ (if| _ F  o) (/k0_ Fl~) 
+ (Fk-- FOk) ( F ° -  F~) + ( F ° -  F~) ( F ° -  F~)] 
x exp {27tiu. r~}, (17) 

and we may deal with the four terms involved sepa- 
rately. The first term of (17) by simple manipulation, 
taking ] =0, r j - r g = r i  and averaging over all choices 
of origin r0, becomes 

N Xi exp {2rdu. r~} [{mAFA(E A -  1) 
+ rn~F~(E~ - 1) )z + mArn~AF2%~]. (18) 

The fourth term of (17) may be written 

A A 2 A B B N X i ({aoa i F A +(aoa  i +O"  0 aA)FAF~ +a~ a~F 2 ) 
x[exp {27~iu. s0}-  1] [exp {27~iu. s i } -  1]). 

If we include only second order terms in (u. s~), the 
product of the final exponential terms is approximately 
47~2(u. s0). (u. s|) where from (10), s i=Xk (e~ASk iA + 

B B at, Ski). 
Then this term becomes 

may 

N 

A A A A 2 A 4~2N Ei ~'k ~'! [(a0 0"i akal )FA(U" Sk0) (U. S~i ) 
+ S o) (u. 
+ . . . . . .  ] exp { - 2 x i u .  r,}. 

Using the relationship (11), this may be written 

4x2N X i exp { -  2xiu . r, } X k X l (u.  SkA0) (u.  s A) 
r~-2 f p A A A A  H ( DAAAB _£. AABA X L ~ A ( ,  0ikl /~k* 0ikl ~ e 0 i k |  ) --/~"L" H2pAABB).., 0ikl .I 

+ ABAA - -  t l  ( p A B A B  -L. p B A A B  
P 0 i k l  ) t*~,--0ikl t X 0 i k l  

p A B B A  ..1_ pBABA3 .-l..- ,,,r2( pABBB _1.. pBABB~~ 
* 0 i k l  * *  Oikl I - - / -*  \ - -0 ik l  ~ * 0 i k l  .]J 

+ F 2 SpBBAA__ ,, tpBBAa ~ pBBBA~ _L ,,2PB~Btl (19) 
(* 0ikl ,'~k't 01ki ~ - - 0 i k l  ] ~ / '~  Z0 ik l  JJ • 

Then using (8), this reduces to 

4~r2N S i exp ( -2zc iu .  r~} 
× mama XkS l (u. Sffo) (u. s A) [(/zF, + FB)2ak| 

+ (1 + la) (lZFA + FB)A F(rok| + qk| ) + #AFZ¢o~,|] • 
(20) 

The second and third terms of (17) are similar and 
be treated together. The second may be written 

X i exp {-27~iu. ri} 
× [F(FA@A(1--exp {--27~iu. Si})) 
+ FB(0"~(1--exp{--2xiu. si})) ) 
-- {(affaiA(1--exp {--2niu .  si }))F 2 
+ ((aga~ +a~ aft) (1 --exp {--27~iu. sj}))FAF B 
+ (ag a~(1-exp {-27~iu. s, }))F 2 }] 
= N  Si exp {-27~iu. ri}[F{rnAFA(1--EA) 
+ mBF~(1 -- E~) } - F2A {2~zi ~v" k (u. S A ) (P 0ik2~ 
- -  uP0~ A~ )  -t- 27~ 2 .~r' k ~V' (U . S A ) (U " sA ) [PoiklAAAA 

__ ,,,,tpAAAB _]_ pAABA~ 2._ ,~2 ]OAABB]'~ 
/~k* 0ikl " Oikl ) " / ~  a 0 ik l  J )  

- F.F {2 /Zk . . . . . .  } _ ; 2 { . . . } ] .  

Combining this with the third term of (17) we obtain 

N X~ exp {-27~iu. rt} [2F{mAFA(1--EA) 
+mBF~(1-EB)}+27ti '~k { U .  ( S A 0 - - S ~ ) }  

2 AAA AAB F A F B ( P o i  k + p B A A  X {FA(Poi k --flPoik ) +  ABA * 0ik 
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BBB __ , ,pABB__ , ,pBAB] %- F~/ 'pBBA f lP0ik  )} P~--0ik / ~ 0 i k  7 k--Oik 
_ 2~z2 ~V' k ~V'| { (U.  eRA0) (U .  el/~) 

+(u. e~,) (u. e~)} { . . . } l ,  (21) 

where the content of the final bracket { . . .  } is exactly 
the same as for the square bracket [ . . . ]  of (19). 

Adding all four terms of (17) we thus obtain 

IDiff=N X i exp {--2niu .  ri} [(mAF A + m B F B ) 2 - F  z] 
+ Nmgm B _r~ exp {--2niu .  ri} 
× [AFEaoi + 2~zi X k {(/ZFA + FB)AF(aik(U • ego) 
- a0k(U, e~)) + (1 +/z)AF2roik[U. (e~o- e~)]} 
- 2~z 2 ~V" k ~V~ l { ( f i r  A %- eB)2~kl %- (1%- fl) ( / tFA 

%- F B ) .  a F ( z 0 k i  %- Zik,) %-flAF2q~0iki} 
x {U(eA0--eA)} {U(e~ -- CA )}] . (22) 

The quantity (CA0--e A) which appears here represents 
the change in the interatomic vector from the origin to 
the atom at r~ due to an A atom at position k. 

This pleasantly compact form (22) of the result is 
unsatisfactory, however, because the second part 
contains some terms independent of i which cancel 
out with the first part, leaving no contribution to the 
sharp Bragg peaks, and also because the special terms 
k = 0, i and 1 = 0, i and k = 1 have particular significance 
for the interpretation of the expressions in terms of 
diffuse scattering. 

In separating out these special terms, we make use 
of relations such as (9) and also symmetry relationships 
such as 

~V" k ~X0k(U A __ A • ek0 ) -- Z k (Xik(U • ~ki) : 0  , 

so that 

Zkt (X0k(U • ek0)A __-- --  ~'kt 0Cik(U" cA)  : --¢X0i(U" ei'~) • 

Similarly 

z ' r '  ~0k~(U • eke) (u. e A) 
k~=l 

: Z t ~ V "  "(ikl(U . e~o) (u . e~ ) .  (23)  
k# l  

The primed summation sign Z'~, denotes a summation 
over k excluding the special values k = 0  and k = i .  

The resulting expression, calculated for terms of up 
to the second order in (u.  e~), is somewhat cumber- 
some. We divide it into three parts: Im the Huang 
diffuse scattering, concentrated around the reciprocal 
lattice points; Is~ o, the s.r.o, diffuse scattering, con- 
centrated around the positions of superlattice reflec- 
tions, and IHO, the terms containing higher-order 
correlation parameters for which the distribution of 
diffuse scattering is not to be associated clearly with 
that of either of the previous terms. Thus 

In = NmAms ~'i sin (2gu. rO [4rcAF(IzFA + FB) 

× {(u. e,'~) + z l  ~,~(u. e~0)}] 
+4rc2NmArnB Z i cos (2nu. r0 [{(1-IOAF(laFA 
+ FB) +/ tAF 2} { - ( u .  e~)2+ (u .e~o ) £'~, O~Ok(U.ekA)} 

-~-(~/F A %-YB)2{~v"~ V't (XkI(U. ekA0) (U .  el/~) 
k¢ l  

+ z~,(u .e~0) (u. e~)} 
--AF(/xFA+FB) {(1- / t )  X k 0C0k[(U. ek~e~) 2 

-2 (u .  efo ) (u. e~i)] 
%-(1%-/0 X'X '  Z0k,[(U. ekAi) (U. e A) 

k¢l 

-2 (u .  e~o ) (u. e A)]}]. (24) 

Both the antisymmetrical and symmetrical parts of 
this expression are seen to increase with distance from 
the origin of reciprocal space, in the same way as ther- 
mal diffuse scattering, being zero around the incident 
beam direction. 

Isro = &zNrnAmB Zi sin (2~zu. r0 
x [AF(FA %- laFB) (u. e~)aot ] 
+ N m A m  B Z i COS (2~u. ri) [dFZ~xoi{1-2~2fl X~ 
x [u. (CA0-- e~)12-- 4Zr2(1 -/x)Z(u. eg o )2} 
+ 4rc2lt( l + lu) ( FZA + F~ ) (u . e~ )2aoi ] . (25) 

The first part is an antisymmetrical term added to 
the s.r.o, diffuse peak and resulting in the well-known 
displacement of the peak from the position of the 
superlattice reciprocal lattice position. The second 
part is the normal s.r.o, diffuse scattering modified 
by an effective temperature factor which will decrease 
the height of s.r.o, peaks and broaden them with 
increasing scattering angle. It may be noted that the 
effective temperature factor in this case is not the same 
as that for the Bragg peaks. There is also a weak, 
broadened peak which is dependent on the sum of the 
squares of the structure factors instead of on AF 2. 

Finally, 

Ino = 2rcNmAmB .Si sin (2~u. r0 
× ~ ( 1  + / t )AF 2 •kt ~0ik{ u • (EkoA __ ek iA )}1 

+2rc2NrnAmB Xi cos (2zru. r0  [2{(1 +/a) (F A 
+/xFB)AF+(1- /x2)AF 2} (u. e~) Z'~, Z0ik(U. e A) 
-(1-~2)~F2 Z;, ~0ik{u. (e~0- ek5)? 
- f l A F  2 Z ' X '  ~0ikl{U A A • (ekO - -  eki  ) }  

k¢ l  
x {u. ( e ~ - e ~ ) } ] .  (26) 

This term again contains components both sym- 
metrical and anti-symmetrical about the reciprocal 
lattice points, but the particular importance of these 
components in practice is yet to be determined. It 
seems probable that they could be of appreciable 
magnitude for temperatures near the critical temper- 
ature. 

Special cases 

From the form of the expressions (24), (25), (26) it is 
clear that considerable simplifications will occur for 
some special cases. For example, if/z = 1, rnA = rnB = ½, 
all the terms containing third-order parameters ZUk as 
well as those containing ( 1 - / t )  will vanish. 

A C 24A - 6 
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Another case of special interest is that for which 
FA = FB, A F =  0. Then all antisymmetrical components 
vanish but some diffuse scattering remains around the 
reciprocal lattice points and s.r.o, peaks: thus 

In=  NmAmB4rcF2(1 + ] . / ) 2  '~t COS (27m. r0 
x [z'f,(u. ~:~'o) (u. ~,f,) 
+ ~'z '%,(u. ~o) (u. ~)1 ,  

k ~ l  

Isro = NmAm B 8 rc2l~ ( 1 
+ / Q F  2 Z'z %i(u. s~) 2 cos (2rm. r 0 .  (27) 

The higher order terms in IHo are all zero. 
To treat the case of diffraction from a relatively 

small number of substitutional impurity atoms or 
vacancies in a crystal, we may take the limiting case, 
/z --~ 0, m A -+ 0, ms ~- 1, noting that from (11), s~ >> s~, 
so that all the atom displacements are those associated 
with the impurities. 

For vacancies FA=0, and we obtain 

IH= N4rCmA F2 .S l sin (2~u. r0 Z'k ~n,(u. sA0) 
+ N4rc2mAF 2 S l cos (2~u. rd [27k %k(U. S~) 

+ z ~  ~k,(U • ~o) (u. ~ )  
-zlz~ ~0~,{(u. ~ )  (u. ~ ) - 2 ( u .  ~'o)(U. ~)}1, 

I~o=  NrngF~ X i cos (2rm. r0 [%1- 8rcz%i(u • s~)~], 
IHo=NrnA2rcZF~ S, cos (2rm. rz) [S~ Z0ik{2(U. S~0 ) 

x (u. ~ . ) - [ u .  (~ '0 -~)2) ]  • (28) 

Here the primes or k #  1 restrictions have been re- 
moved from some summations for the sake of com- 
pactness. However in general one would expect the 
order parameters to tend to zero for this case, so that 
the k = 0 ,  i or k = l  terms may be the most important 
ones. 

Finally, for any composition, in the limiting case 
of zero order, i.e. when e~i=0 except cqi= 1 and all 
non-degenerate higher order parameters are zero, only 
the Huang scattering remains, apart from a uniform 
background. Then 

IH=NmAm~4nAF(aUFA + F~3) X~ (u. si~) sin (2nur0 
+ 4rc2NmAml3 --r i cos (2nu. r0 [(/tFg +Fa)  2 

x Zi(u. ~:~o) (u. ~ )  
--{(1 -Ia)AF(l tF A + Fa) +,uAF2}(u . s~)2], 

I~  o = Nrn ~rn~A FZ . (29) 

This is to be compared with the expressions for the 
disordered state obtained by Borie (1957, 1959), 
Huang (1947) and Cochran & Kartha (1956). In par- 
ticular, it contains all the terms of equation (5) of 
Boric (1959) plus some smaller, additional terms, in 
(u. ~,0)~. 

D i s c u s s i o n  

The expressions for the diffracted intensities have been 
obtained here only as far as the second-order terms in 
the quantities, (u.  s~) which are usually considered to 

be small. However, for large scattering angles, i.e. large 
values of u, this approximation may be insufficient. 
The extension of the calculations to give higher-order 
terms is straightforward, although somewhat laborious, 
particularly if the form equivalent to (22) is expanded 
to give the special terms in detail, as in (24), (25) and 
(26). 

It is clear that, for the fundamental Bragg reflexions, 
the next terms to be included will be those of fourth 
order and these will include summations over • th- 
order correlation parameters, to be added to the 
pseudo-temperature factors of (14), (15) and (16). For 
the diffuse scattering, the inclusion of third-order terms 
will involve consideration of five-atom probability 
functions, leading to expressions containing fifth-order 
and some further fourth-order correlation parameters. 

In the initial work on size effect by Warren, Averbach 
& Roberts (1951), the modification of the diffracted 
intensity was described by means of parameters fli 
which, in the notation of the present paper, may be 
defined as 

fli=ZF-1 (~'~ i [(~FA+r~)+(rA+~r~)~i0]. (30) 
\ r i  / 

Inclusion of these quantities as coefficients of a 
Fourier sine summation gives the first part of the sine 
summation of (24) and the sine summation of (25). 
Borie's (1957) expression for the pseudo-temperature 
factor, M' ,  appears to include the single summations, 
Sk, of (14), (15) and (16) but not the double summa- 
tions, ~ Z', and his expressions for the diffuse scattering 

k~l 
are similarly limited• 

The relative magnitudes of the various terms in (16) 
may be found approximately for the particular case 
of Cu3Au at 450°C by using the experimental values 
of the c~ parameters determined by Moss (1964) and 
the value of z123 for nearest neighbour triplets derived 
above from the results of the computer experiments of 
Gehlen & Cohen (1965). Assuming that (u. s~0 ) ¢-0 and 
Z0k~#0 only for nearest-neighbour atoms, the sum- 
mations of (16) become 

~V'k(U . EAo)2 ,-~ 4 (  u A 2 • EiO )max , 
Z ,~  0CkI(U • S~'0) (U . S~0)__(__0.53)4(U . Sm)maxA 2 , 
k ¢ !  

'~V'k ~0k( u • ekA0)2 -- ( -- 0"195)4( u • ~10)maxA 2 , 
and 

z ~" ~0k~(U • C~'o) (U . C~ ) _~ ( -- 0" 14)4(U • C~o~ )m=2, 
k~ 

where (u A • si0)m= represents the value of the product 
for u parallel to s~. 

Inserting the appropriate values for mA, mB, FA, FB, 
we find that the four terms of (16) involving summa- 
tions are approximately in the ratios of the numbers 
1.0, -0 .53,  - 0 . 1 4  and +0.20. 

Although the significance of these values is severely 
limited by the approximations involved, they do serve 
to indicate that all the terms included in (I6) may 
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contribute appreciably to the value of the pseudo- 
temperature factor and none should be ignored. 

In the above treatment we have avoided making an 
explicit assumption concerning the form of e~. It 
would be quite easy to substitute the specific form 
assumed by Borie and others, writing ei~ =ctril/lrij[ 3. 
Then, following Boric, the summations over k and 1 
not involving order parameters may be explicitly 
evaluated. 

The task of sorting out in practice the relative impor- 
tance of the various terms and the values of the cor- 
relation and displacement parameters involved in the 
expressions for the pseudo-temperature factor of 
Bragg peaks and the diffuse scattering is a difficult 
one. However considerable progress may be possible 
in particular cases if a series of measurements is made 
for different values of the adjustable parameters. The 
temperature may be varied. Variation of the composi- 
tion may include use of the 50:50 composition, for 
which all odd-order correlation parameters vanish. 
Finally the scattering factors may be varied independ- 
ently of all other parameters by choosing different 
radiations. For copper-gold alloys, for example, the 
condition FA=FB is very nearly achieved in neutron 
diffraction and could be made exact by use of iso- 
topically enriched elements. For this case it is inter- 
esting to note the prediction of equation (27) that a 
weak, broadened, short-range order peak should still 
appear. Measurement of such a peak would give values 
for the displacement parameters if the s.r.o, param- 
eters were known, and vice versa. 

The author wishes to thank Dr P. C. Clapp for valu- 
able discussions and correspondence concerning the 

higher-order correlation parameters. The work was 
supported by a contract from the Australian Atomic 
Energy Commission. 
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Elastic Coefficients in Crystals 
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Jahn's method of reduction of a representation has been applied and extended to obtain the fourth 
order and the fifth order elastic coefficients for the 32 classes of crystals. 

It is well known that the character method (Bhagavan- 
tam & Suryanarayana, 1949) could be successfully em- 
ployed for deriving the number of independent con- 
stants in respect of the various physical properties for 
the 32 crystal classes. Following the suggestion of 
Chelam (1961), one of us (Krishnamurty, 1963) has 
applied the character method for obtaining the number 

of independent fourth-order elastic coefficients for the 
32 crystallographic point groups. 

In this note, it is proposed to apply and extend 
Jahn's (1949) method of reduction of a representation 
to derive the number of the fourth-order and the fifth- 
order elastic coefficients, which are symmetric in all 
the indices, for the 32 point groups. The results so ob- 
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